王国庆

发布者:徐宋娟发布时间:2018-03-14浏览次数:15685



 王国庆,教授,博士生导师

 电话:0532-82031086

 主页:https://dnanores.wixsite.com/dnano

一、个人简历

 2013年获日本北海道大学(导师:居城邦治教授)博士学位。随后在美国加州大学河滨分校(导师:殷亚东教授)和日本理化学研究所(导师:前田瑞夫教授)分别从事纳米材料和核酸纳米探针方面的研究。先后获年度国家优秀自费留学生奖学金(2012)、日本学术振兴会特别研究员(2012年)、理化学研究所研究奖励赏(2017)和山东省青年科技人才托举工程人选(2018)等荣誉。入选中国海洋大学青年英才工程第一层次,讲授化工原理(本科生)和食品纳米技术(研究生)等课程。共事的本科生、硕士生和博士生已有多人赴北美和日本留学或者交流访问。主要研究方向为智能分子软界面及其在食品安全领域的应用。

二、学术兼职

1、中国海洋湖沼学会海岸带可持续发展分会理事(2021

2Frontiers in ChemistryMolecules等杂志的客座编辑或编委(2021-

3、日本理化学研究所客座研究员(20182021

三、研究方向

1、食品中危害物质快检

2、食品抗菌材料

3、食品分子界面化学

四、近期部分论文https://dnanores.wixsite.com/dnano/publications

1. Non-Origami DNA for Functional Nanostructures: from Structural Control to Advanced Applications. Nano Today 2021, 39, 101154

2. Island Growth in the Seed-Mediated Overgrowth of Monometallic Colloidal Nanostructures. Chem 2017, 3, 678–690.

3. Directed Assembly of Gold Nanorods by Terminal-Base Pairing of Surface-Grafted DNA. Small 2017, 1702137

4. Gold Nanostructures with Near-Infrared Plasmonic Resonance: Synthesis and Functionalization. Coordination Chemistry Reviews 2017, 336, 28–42.

5. Range-Tunable Plasmon Switching of Gold Nanorods by Terminal Breathing of Surface-Grafted DNA in Alcoholic Solvents. Journal of Materials Chemistry C 2021, in press

6. Identifying Exogenous DNA in Liquid Foods by Gold Nanoparticles: Potential Applications in Traceability. ACS Food Science and Technology 2021, in press

7. Hierarchical Growth of Au Nanograss with Intense Built-In Hotspots for Plasmonic Applications. Journal of Materials Chemistry C. 2020, 8, 16073-16082.

8. Opposite Effects of Flexible Single-Stranded DNA Regions and Rigid Loops in DNAzyme on Colloidal Nanoparticle Stability for Turn-On Plasmonic Detection of Lead Ions. ACS Applied Bio Materials 2020, 3, 7003-7010

9. Colorimetric Determination of Mercury(II) Ion based on DNA-Assisted Amalgamation: A Comparison Study on Gold, Silver and Ag@Au Nanoplates. Microchimica Acta 2019, 186:713.

10. Chemically Fuled Plasmon Switching of Gold Nanorods by Single Base Pairing of Surface-Grafted DNA. Langmuir 2019, 35, 11710-11716.

11. Cross-Linking versus Non-Crosslinking Aggregation of Gold Nanoparticles Induced by DNA Hybridization: A comparison of the Rapidity of Solution Color Change. Bioconjugate Chemistry 2017, 28, 270–277.

12. Halide-Free Synthesis of Au Nanoplates with High Yield and Controllable Size. Chemical Communications 2016, 52, 398–401.

13. Rapid Non-Crosslinking Aggregation of DNA-Functionalized Gold Nanorods and Nanotriangles for Colorimetric Single-Nucleotide Discrimination. Chemistry – A European Journal 2016, 22, 258–263.

14. Shape-Selective Isolation of Au Nanoplates from Complex Colloidal Media by Depletion Flocculation. Colloids and Surfaces A 2019, 568, 216-223.

15. Accelerated Non-Crosslinking Assembly of DNA-Functionalized Nanoparticles in Alcoholic Solvents: Towards Application in Identification of Clear Liquors. Analyst 2020, 145, 3229-3235.

16. Plasmon Switching of gold nanoparticles through thermo-responsive terminal Breathing of Surface-Grafted DNA in Hydrated Ionic Liquid. Analyst 2021, in press

17. Chemical Redox-Modulated Etching of Plasmonic Nanoparticles for Nitrite Detection: Comparison among Gold Nanosphere, Nanorod, and Nanotriangle. Journal of Analysis and Testing 2021, in press

18. Reversible Shrinkage of DNA-Functionalized Gold Nanoparticle Assemblies Revealed by Surface Plasmon Resonance. Biotechnology Journal 2018, 13, 1800090.